Topic F: Line graphs

This topic recaps how you can calculate key properties of straight line graphs when given two points on the line, in particular: the gradient, the length of a line segment, the midpoint of a line segment, the equation of the perpendicular bisector of a line segment, and the equation of the line. The gradient of a line is a measure of how steep it is.

Key point The gradient, *m*, of a line between two points (x_1, y_1) and (x_2, y_2) is given by $m = \frac{y_2 - y_1}{x_2 - x_1}$

Calculate the gradient of the line through the points A(1, -6) and B(-5, 2)Use $m = \frac{y_2 - y_1}{x_2 - x_1}$ with $x_1 = 1$, $x_2 = -5$ and The line has a negative gradient so slopes down from left to right.

Find the gradient of the line through each pair of points.

Try It 1

- **a** (1, 7) and (4, 8)
- **b** (8,-2) and (4,6) **c** (-8,7) and (-4,-7)

MyMaths (

Q	1153, 1312,	1314

You also can find the length of a line segment between two points using Pythagoras' theorem.

Key point The length of the line segment, *d*, between two points (x_1, y_1) and (x_2, y_2) is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Calculate the exact distance between the point (5, 1) and (6, -4)

$$d = \sqrt{(6-5)^2 + (-4-1)^2}$$

$$= \sqrt{1^2 + (-5)^2}$$

$$= \sqrt{26}$$

 $d = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$ with $x_1 = 5$, $x_2 = 6$ and $y_1 = 1, \ y_2 = -4$

Leave answer as a surd since this is exact.

Calculate the exact distance between each pair of points.

Try It 2

b
$$(6,-4)$$
 and $(-3,-1)$ **c** $(\sqrt{2},4)$ and $(4\sqrt{2},-5)$

The midpoint of a line segment is half-way between the points at either end.

The midpoint of the line segment from (x_1, y_1) to (x_2, y_2) is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Key point

The points A and B have coordinates (-4, -9) and (6, -2) respectively. Find the midpoint of AB

Midpoint =
$$\left(\frac{(-4)+6}{2}, \frac{(-9)+(-2)}{2}\right)$$

$$= \left(\frac{2}{2}, \frac{-11}{2}\right)$$

$$= (1, -5.5)$$
Use $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
with $x_1 = -4, x_2 = 6$ and $y_1 = -9, y_2 = -2$

Calculate the midpoint of the line segment between each pair of points.

Try It 3

- **a** (1,9) and (2,5) **b** (-2,3) and (-5,-7) **c** (6.4,-9.3) and (-2.6,-3.7)

The equation of a straight line is y = mx + c where m is the gradient and *c* is the *y*-intercept.

Key point

Work out the gradient and the y-intercept of each of these lines.

a
$$y = \frac{1}{2}x + 4$$

b
$$y + x = 5$$

c
$$-2x+3y+7=0$$

a
$$y = \frac{1}{2}x + 4$$
 b $y + x = 5$ **c** $-2x + 3y + 7 = 0$
a Gradient = $\frac{1}{2}$ and y-intercept = 4

Since y = mx + c where mis the gradient and c is the *y*-intercept.

b
$$y = 5 - x$$

So gradient = -1 and y-intercept = 5

Rearrange to make y the subject.

c
$$3y = -7 + 2x$$

$$y = -\frac{7}{3} + \frac{2}{3}x$$

So gradient =
$$\frac{2}{3}$$
 and y-intercept = $-\frac{7}{3}$

Rearrange to make y the subject.

Work out the gradient and the *y*-intercept of each line.

Try It 4

a
$$v = 8 - 2$$

b
$$2y + x = 3$$

a
$$y=8-2x$$
 b $2y+x=3$ **c** $6x-9y-4=0$

You can write the gradient of a line in terms of a known point on the line (x_1, y_1) , the general point (x, y), and the gradient, m.

 $m = \frac{y - y_1}{x - x_1}$ or alternatively $y - y_1 = m(x - x_1)$

MyMaths (Q 1153, 1312, 1314

SEARCH

Key point

If you have the coordinates of two points on a line then you can find the equation of the line. First use $m = \frac{y_2 - y_1}{x_2 - x_1}$ to find the gradient of the line then substitute into $y - y_1 = m(x - x_1)$. Sometimes you will then need to rearrange the equation into a specific form.

Find the equation of the line through the points (3, 7) and (4, -2) in the form y = mx + c $m = \frac{(-2) - 7}{4 - 3}$ = -9So the equation is y - 7 = -9(x - 3) y - 7 = -9x + 27 y = -9x + 34Expand the brackets and rearrange to the correct form.

Expand the correct form.

Expand the brackets and use the point (4, -2) instead.

Find the equation o	of the line through each	pair of points.	Try It 5
a (3, 7) and (2, 9)	b $(5,-1)$ and $(7,5)$	c $(-3, -4)$ and $(7, 2)$	

Lines with the same gradient are **parallel**. For example, y = 5x + 2 is parallel to y = 5x - 7, because the gradients are the same.

The line l_1 has equation 2x+6y=5. The line l_2 is parallel to l_1 and passes through the point (1, -5). Find the equation of l_2 in the form ax + by + c = 0 where a, b and c are integers.

Try It 6 The line l_1 has equation 3x-2y=8. A second line, l_2 is parallel to l_1 and passes through the point (3, -2). Find the equation of l_2 in the form ax + by + c = 0 where a_1 b and c are integers.

Lines that meet at a right angle are **perpendicular**. The gradients of two perpendicular lines multiply to give -1. For example, a line with gradient 5 is perpendicular to a line with gradient $-\frac{1}{5}$ since $5 \times \left(-\frac{1}{5}\right) = -1$

If the gradient of a line is m then the gradient of a perpendicular line is $-\frac{1}{m}$ since $m \times \left(-\frac{1}{m}\right) = -1$

Decide whether or not each line is parallel or perpendicular to the line y = 4x - 1

a
$$2x + 8y = 5$$

b
$$20x+5y=2$$

b
$$20x+5y=2$$
 c $16x-4y=5$

Key point

First note that the gradient of y = 4x - 1 is 4

Rearrange to make y the subject.

a
$$2x + 8y = 5 \Rightarrow 8y = 5 - 2x$$

$$\Rightarrow y = \frac{5}{8} - \frac{1}{4}x$$

$$4 \times \left(-\frac{1}{4}\right) = -1 \text{ so this line is perpendicular to } y = 4x - 1$$

The gradient is -

Since the product of the gradients is -1

b $20x+5y=2 \Rightarrow 5y=2-20x$

$$\Rightarrow y = \frac{2}{5} - 4x \bullet$$

Rearrange to make y the subject.

The gradient is -4 so this line is neither parallel nor perpendicular to y = 4x - 1

c
$$16x-4y=5 \Rightarrow 4y=16x-5$$

 $\Rightarrow y=4x-\frac{5}{4}$

The gradient is 4 so this line is parallel to y = 4x - 1

Decide whether or not each line is parallel or perpendicular to the line y = 4 - 3x

Try It 7

a
$$3x + 6y = 2$$

b
$$5x-15y=7$$

c
$$18x+6y+5=0$$

SEARCH

xample 8

The line l_1 has equation 7x+4y=8 The line l_2 is perpendicular to l_1 and passes through the point (7, 3). Find the equation of l_2 in the form ax+by+c=0 where a, b and c are integers.

Try It 8 The line l_1 has equation 4x+6y=3. A second line, l_2 is perpendicular to l_1 and passes through the point (-1, 5). Find the equation of l_2 in the form ax + by + c = 0where a, b and c are integers.

The **perpendicular bisector** of a line segment passes through its midpoint at a right angle.

Find the equation of the perpendicular bisector of the line segment joining (3, -4) and (9, -6)

Try It 9 Find the equation of the perpendicular bisector of the line segment joining (2, -3) and (-12, 5)

_	 	 	
_			
_		 	
_		 	

Bridging Exercise Topic F

1 Find the gradient of the line through each pair of points.

a (3, 7) and (2, 8)

b (5, 2) and (-4, -6)

c (1.3, 4.7) and (2.6, -3.1)

d $\left(\frac{1}{2}, \frac{1}{3}\right)$ and $\left(\frac{3}{4}, \frac{2}{3}\right)$

e $(\sqrt{3}, 2)$ and $(2\sqrt{3}, 5)$

f (3a, a) and (a, 5a)

2 Calculate the exact distance between each pair of points.

_	(0.4)	\ 1 ·	(1	<u>م</u> ر
a	(0,4) and	(Ι,	3)

h	(-3.9)	9) and	(12, -7)

d
$$\left(\frac{1}{5}, -\frac{1}{5}\right)$$
 and $\left(\frac{3}{5}, -\frac{4}{5}\right)$

	е	$(5, -3\sqrt{2})$ and $(2, \sqrt{2})$
	f	(k, -3k) and $(2k, -6k)$
3	Fir	nd the coordinates of the midpoint of each pair of points.
	а	(3, 9) and (1, 7)
	b	(2, -4) and (-3, -9)
	С	(2.1, 3.5) and (6.3, –3.7)

ч	$(\frac{2}{2})$	_1)	and	(_	5	3
u	$(\overline{3}')$	$-\frac{1}{2}$	anu	(3	$\frac{1}{2}$

			_	_
е	$(6\sqrt{5}, 2\sqrt{5})$	and	$(-\sqrt{5},$	$\sqrt{5}$

f
$$(m, 2n)$$
 and $(3m, -2n)$

4 Work out the gradient and the *y*-intercept of these lines.

a
$$y = 7x - 4$$

b
$$y+2x=3$$

$$\mathbf{c} \qquad x - y = 4$$

d	3x+2y=7	
_	530 1 2 y	
е	5x-2y=9	
f	5y-3x=0	
~		
g	x+6y+3=0	
h	3(y-2)=4(x-1)	
	S(y = y = 1(w = 1))	

Fi		he line through each pair of points.
а	(2, 5) and (0, 6)	
b	(1, -3) and $(2, -5)$.	
С	(4,4) and $(7,-7)$	

5

d	(8, -2) and $(4, -3)$		
	(-, -, (-, -)		

$$f (\sqrt{2}, -\sqrt{2})$$
 and _____

$$(3\sqrt{2},4\sqrt{2})$$

6 Which of these lines is either parallel or perpendicular to the line with equation y = 6x + 5?

a 2x+12y+3=0

b	18x + 3y = 2	

c
$$3x - \frac{1}{2}y + 5 = 0$$

7 Which of these lines is either parallel or perpendicular to the line with equation
$$y = \frac{2}{3}x - 4$$
?

a
$$24x+16y+3=0$$

b
$$6x+9y+2=0$$

8	Wł	nich of these lines	is either parallel or perpendicular to the line with equation $6x+12y=1$?
	a	2y = 5 - x	
	b	9x = 18y + 4	
		·	
	С	10x - 5y + 3 = 0	
	U	10x - 3y + 3 = 0	
In	que	stions 9–13 , give y	your answers in the form $ax + by + c = 0$ where a , b and c are integers.
9	The	e line $\mathit{l}_{\scriptscriptstyle 1}$ has equati	on $y=5x+1$
	а	Find the equatio	n of the line l_2 which is parallel to l_1 and passes through (3, –3)

b Find the equation of the line l_2 which is perpendicular to l_1 and passes through (–4,				
10	The	eline l_1 has equation $y = 3 + \frac{1}{2}x$		
		2		
	а	Find the equation of the line l_2 which is parallel to l_1 and passes through (-1, 5)		
	b	Find the equation of the line l_2 which is perpendicular to l_1 and passes through (6, 2)		
11	The	e line l_1 has equation $3x+y=9$		
	а	Find the equation of the line l_2 which is parallel to l_1 and passes through (8, –2)		

	b	Find the equation of the line l_2 which is perpendicular to l_1 and passes through $(-1,-1)$
12	The	e line l_1 has equation $6x+5y+2=0$
	a	Find the equation of the line $l_{\scriptscriptstyle 2}$ which is parallel to $l_{\scriptscriptstyle 1}$ and passes through (4, 0)
	b	Find the equation of the line l_2 which is perpendicular to l_1 and passes through (12, 3)

13 The line l_1 has equation 6x-2y=1

a	Find the equation of the line l_2 which is parallel to l_1 and passes through	$\left(\frac{1}{2},\right.$	1
---	---	-----------------------------	---

b	Find the equation of the line l_2 which is perpendicular to l_1 and passes through	$\left(-1,-\right)$	$-\frac{1}{2}$

14 Find the equation of the perpendicular bisector of the line segment joining each pair of points.

a
$$(5, -7)$$
 and $(-3, 5)$

b	(-5, -9) and $(5, 5)$
С	(-6, 2) and (4, 12)
Ĭ	(0, 2, and (1, 12)

(2, -7) and (-1, 2)
-	
-	
-	
-	
-	
-	
_	
(-	–13, –5) and (15, –12)
-	
-	
-	
-	
-	
-	
- d	the point of intersection between these pairs of lines.
	y = 5x - 4 and $y = 3 - 2x$
,	
-	

b	y=8x and $y=3x-10$
C	$y = 7x - 5$ and $y = -\frac{1}{2}x + 5$

h	$y = \frac{1}{4}x + 7$	and $y = 5x =$	ļ
u		and $y = 3x^2$	2

16 Find the point of intersection between these pairs of lines.

a
$$2x+3y=1$$
 and $3x-y=7$

b
$$3x-2y=4$$
 and $x+y=8$

C	5x-7y=3 and $2x+8y=3$
d	-8x+5y=1 and $3x+18y+7=0$