\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Year 12} \\
\hline When \& \begin{tabular}{l}
WHAT \& WHY WILL THEY LEARN? \\
(SOW overview linked to assessment Objectives) \\
What do Yr12/13 need to know and be able to do by the time they leave TENC? How do you sequence the teaching? How do you revisit, revise and reinforce?
\end{tabular} \& \begin{tabular}{l}
New \\
Skill = NS \\
Revisit = \\
R \\
Revision
\[
=R V
\]
\end{tabular} \& \begin{tabular}{l}
Stretch and Challenge \\
(Differentiation how will you stretch the most able to achieve top grades?) \\
Is your curriculum challenging?
\end{tabular} \& \multirow[t]{2}{*}{\begin{tabular}{l}
CIEAG/Extension \\
Enrichment \\
Trips, workshops, speakers, local environment and experiences
\end{tabular}} \& \multirow[t]{2}{*}{\begin{tabular}{l}
KS4 PRIOR LEARNING and OTHER NOTES \\
How will GCSE knowledge, skills \& experience across 3 schools link to and support KS5 new knowledge and skills? This needs to show how you build links across the experiences of the different schools
\end{tabular}} \\
\hline Term Plan \& KNOWLEDGE \& SKILLS \& \& \begin{tabular}{l}
Band 5 = \\
Informed \\
Band 6 = Mature
\end{tabular} \& \& \\
\hline \& \begin{tabular}{l}
Transition Task \\
- Understand and use the laws of indices for all rational exponents \\
- Use and manipulate surds, including rationalising the denominator. \\
- Work with quadratic functions and their graphs. \\
- Solution of quadratic equations \\
- Completing the square. \\
- Solve simultaneous equations in two variables by elimination and by substitution, including
\end{tabular} \& \(R V\)

$R V$

$R V$
$R V$
$R V$

$R V$ \& Most topics on Integral include an exercise level 3 task. This should be set as an extension where needed. Below are some links to other tasks that might be a good idea to challenge students' reasoning. \& | A lot of really good resources here. It includes resources for promoting A level, posters, podcasts and enrichment activities. This link is very worth exploring: Click here |
| :--- |
| Senior Maths Challenge (AMSP) - | \& | All elements of the Transition Task are at the higher end of the GCSE syllabus except the polynomial division. |
| :--- |
| It is expected that students start in September with a strong foundation of these algebraic concepts. | \\

\hline
\end{tabular}

A-Level Maths - Pure Topics

\(\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline & \begin{array}{l}\text { one linear and one quadratic } \\
\text { equation. } \\
\text { Manipulate polynomials } \\
\text { algebraically, including } \\
\text { expanding brackets and } \\
\text { collecting like terms, } \\
\text { factorisation and simple } \\
\text { algebraic division }\end{array} & & & & \begin{array}{l}\text { Individual papers } \\
\text { usually about } \\
\text { November and a } \\
\text { Team } \\
\text { competition too. }\end{array}
$$

(Link)\end{array}\right]\)| RV |
| :--- |

- Understand and use the definitions of sine, cosine and tangent for all arguments;
- the sine and cosine rules; the area of a triangle in the form $1 / 2 a b \sin C$
- Understand and use the sine, cosine and tangent functions; their graphs, symmetries and periodicity.
- Understand and use $\sin \theta / \cos$ $\theta=\tan \theta$
- Understand and use $\sin ^{2} \theta+$ $\cos ^{2} \theta=1$
- Solve simple trigonometric equations in a given interval, including quadratic equations in sin, cos and tan and equations involving multiples of the unknown angle.

APPLIED

Chapter 11 - Sampling, data, presentation and interpretation

- Populations and sampling
- Representing data
- Location: mean, median, mode and range

Sine, Cosine and Area rules at GCSE.

Graphs are covered at GCSE but only briefly.

Good to link back to Unit Circle as this is something that often wouldn'† have been looked at in GCSE.

Throughout the delivery of the Statistics topics reference will need to be made to the "large data set" which forms part of the assessment for this unit. This is best done as work is completed rather than as an add on task.

A-Level Maths - Pure Topics

	- Dispersion - Correlation and regression Chapter 15 - Kinematics - Motion graphs - Constant acceleration question - Non-uniform acceleration Chapter 16 - Forces and Newtons laws - Modelling in Mechanics - Constant acceleration - Forces and motion - Newtons laws of motion Chapter 12 - Probability - Elementary probability - Solving probability problems - Laws of probability	$\begin{aligned} & \text { NS } \\ & \text { NS } \\ & \text { R } \\ & \text { NS } \\ & \text { R } \\ & \text { R } \\ & \text { NS } \end{aligned}$	Statistics Vital -MSV- Activity) Practical Ideas (STEM) Deriving SUVAT (Card Sort) Speed vs Velocity (Underground Maths) Practical Spring Activity (STEM) Balls in a Box (MSV) Two Dominoes Problem (MSV)	Link to Large Data Set resources GCSE statistics; basic understanding of conducting surveys/ questionnaires. GCSE physics and SUVAT equations Diagrams for force questions are an absolute must! This needs to be stressed and modelled in lessons. Group work creating a force diagram at the start of a question work well Venn diagrams, tree diagrams, probability are all familiar to students at GCSE
$\begin{aligned} & \text { Term } \\ & 2 \end{aligned}$	Binomial Expansion - Understand and use the binomial expansion of $(a+b x)^{n}$ for positive integer n; the	NS	Pascal's Triangle (RISP)	New topic but some may have come across Pascal's Triangle before. Might be

A-Level Maths - Pure Topics

A-Level Maths - Pure Topics

Year 12					
When	WHAT \& WHY WILL THEY LEARN? (SOW overview linked to assessment Objectives)	New Skill = NS Revisit $=$ R Revision = RV	Stretch and Challenge (Differentiation - how will you stretch the most able to achieve top grades?)	CIEAG/Extension Trips, workshops, speakers, local environment and experiences	KS4 PRIOR LEARNING, LINKS AND NOTES How will GCSE knowledge support new skills \& knowledge
$\begin{aligned} & \text { Term } \\ & \text { Plan } \end{aligned}$	KNOWLEDGE \& SKILLS		Band 5 = Informed Band $6=$ Mature		
	Transition Task - Differentiation - application - Differentiation - Chain, Product and Quotient Rules - Functions, Graphs and Transformations - Trigonometry Problem Solving - Proof	RV RV RV RV RV RV RV		A lot of really good resources here. It includes resources for promoting A level, posters, podcasts and enrichment activities. This link is very worth exploring: Click here Senior Maths Challenge	

A-Level Maths - Pure Topics

					(AMSP) Individual papers usually about November and a Team competition too. (Link) Ritangle Competition for students (Link)	
$\begin{array}{\|l} \hline \text { Term } \\ 1 \end{array}$	Proof - Proof by contradiction (including proof of the irrationality of 2 and the infinity of primes, and application to unfamiliar proofs). Trigonometry - Understand and use the standard small angle approximations of sine, cosine and tangent $\sin \theta \approx \theta, \cos \theta \approx 1 / 2$ $\theta^{2}, \tan \theta \approx \theta$ Where θ is in radians. - Understand and use the definitions of secant, cosecant and cotangent and of arcsin, arccos and arctan; their relationships to sine, cosine and tangent; understanding of their graphs; their ranges and domains.		NS NS NS NS	Root 2 is Irrational proof (Card Sort) Proof - Find the Fallacy (Integral) Reciprocal functions (Tarsia) Compound Angles Extension Tasks	My Favourite Problem Posters (AMSP) Problem Solving Business Cards (AMSP) Taking Maths Further Podcasts Taking Maths Further Podcasts (FMSP)	Continuation from Year 12 proof, proof by contradiction is the new element. Look at graphs again and think about the links with domain, range and inverse functions.

- Understand and use $\sin ^{2} \theta+\cos ^{2} \theta=$ $1, \sec ^{2} \theta=1+\tan ^{2} \theta$ and $\operatorname{cosec}^{2} \theta=1+$ $\cot ^{2} \theta$ - Construct proofs involving trigonometric functions and identities. - Solve simple trigonometric equations in a given interval, including quadratic equations in sin, cos and tan and equations involving multiples of the unknown angle. - Understand and use double angle formulae; use of formulae for $\sin (A$ $\pm B), \cos (A \pm B)$, and $\tan (A \pm B)$, understand geometrical proofs of these formulae. - Understand and use expressions for $a \cos \theta+b \sin \theta$ in the equivalent forms of $r \cos (\theta \pm \alpha)$ or $r \sin (\theta \pm \alpha)$ - Use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces. Sequences and Series - Extend to any rational n, including its use for approximation; be aware that the expansion is valid for $\|b x / a\|<1$ (proof not required)		NS R NS NS NS R/NS RV	Compound Angles Generating Formulae (RISP) Extending the Binomial Expansion (RISP)	Enrichment Posters (FMSP) Year 12 Problem Solving Tasks (FMSP)	Make sure they are fluent on getting from the basic identity covered in Yr 12 to the new alternatives rather than remembering all three.

A-Level Maths - Pure Topics

A-Level Maths - Pure Topics

	- Non-uniform acceleration in 2 dimensions Chapter 30 - Dynamics - Resolving forces - Resolving forces involving friction - Newtons laws of motion Chapter 31 - Moments - introduction to moments - reaction forces and friction in moment	RS NS NS NS NS	Practical Ideas (STEM) Forces on Slope (Spot the Error) Moments Practical (STEM) Moments Practical 2 (STEM)	Projectiles builds on year 12 work to now include inclines. SUVAT revisited Vital that diagrams are drawn accurately One of the more challenging topics of AS maths requiring revisiting
$\begin{aligned} & \text { Term } \\ & 2 \end{aligned}$	Integration - Integrate x^{n} (excluding $\mathrm{n}=-1$) and related sums, differences and constant multiples. - Integrate $\mathrm{e}^{\mathrm{kx}}, 1 / \mathrm{x}, \operatorname{sinkx}, \cos \mathrm{kx}$ and related sums, differences and constant multiples.	R NS R/NS	Meaningful Areas (Underground Maths) Substitution (Spot the Error)	Probably the most challenging aspect of the course. Really important to be able to identify when to integrate and what the best method is for that particular question.

A-Level Maths - Pure Topics

- Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves - Understand and use integration as the limit of a sum. - Carry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively - Integrate using partial fractions that are linear in the denominator. - Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions - Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics. Numerical Methods - Locate roots of $f(x)=0$ by considering changes of sign of $f(x)$ in an interval of x on which $f(x)$ is sufficiently well behaved.		NS NS NS NS NS	Approximating solutions (RISP) Is the Serpentine		Some iterative formulae used at GCSE Trapezium rule is used at GCSE

A-Level Maths - Pure Topics

A-Level Maths - Pure Topics

