Question number	Answer	Marks	Guidance
1	$\begin{aligned} & \mathrm{Ca}: \mathrm{N}: \mathrm{O}=30.35 / 40.1: 21.20 / 14.0: \\ & 48.45 / 16.0 \\ & =0.7569: 1.5286: 3.028 \\ & \\ & \text { Formula }=\mathrm{CaN}_{2} \mathrm{O}_{4} \end{aligned}$	B1 B1	
2 (a)	$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$	B1	
2 (b)	$4.50 \times 10^{-3} \mathrm{~mol}$	B1	
2 (c)	$\begin{aligned} & n\left(\mathrm{KClO}_{3}\right)=3.0 \times 10^{-3} \mathrm{~mol} \\ & M\left(\mathrm{KClO}_{3}\right)=122.6 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \text { mass of } \mathrm{KClO}_{3}=0.3678 \mathrm{~g} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
3	$\begin{aligned} & M\left(\mathrm{ZnSO}_{4}\right)=161.5 \mathrm{~g} \mathrm{~mol}^{-1} \\ & n\left(\mathrm{ZnSO}_{4}\right)=6.57 \times 10^{-3} \mathrm{~mol} \\ & n\left(\mathrm{H}_{2} \mathrm{O}\right)=(1.893-1.061) / 18=4.62 \times 10^{-2} \mathrm{~mol} \\ & x=n\left(\mathrm{H}_{2} \mathrm{O}\right) / n\left(\mathrm{ZnSO}_{4}\right)=7 \\ & \text { Formula }=\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	B1 B1 B1 B1	
4	$\begin{aligned} & M\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=106.0 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \text { Actual } n\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=0.0234 \mathrm{~mol} \\ & \text { Theoretical } n\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=0.0234 \times 100 / 65 \\ & =0.0360 \mathrm{~mol} \\ & \text { Theoretical } n\left(\mathrm{NaHCO}_{3}\right)=0.0720 \mathrm{~mol} \\ & \text { Mass of } \mathrm{NaHCO}_{3}=0.0720 \times 84.0=6.05 \mathrm{~g} \end{aligned}$	B1 B1 B1 B1 B1	
5 (a)	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$	B1	
5 (b)	$\begin{aligned} & M\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=159.6 \mathrm{~g} \mathrm{~mol}^{-1} \\ & n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\left(10000 \times 10^{6}\right) 159.6=6.266 \times \\ & 10^{7} \mathrm{~mol} \\ & n(\mathrm{Fe})=1.253 \times 10^{8} \mathrm{~mol}=6.992 \times 10^{9} \mathrm{~g} \\ & (6992 \text { tonne }) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
6 (a)	```Na:N : O = 27.1/23.0 : 16.5/14.0 : 56.4/16.0 = 1.178:1.179:3.525 Formula = NaNO```	B1 B1	
6 (b)	$2 \mathrm{NaNO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$	B1	

Question number	Answer	Marks	Guidance
6 (c)	$\begin{aligned} & M\left(\mathrm{NaNO}_{3}\right)=85.0 \mathrm{~g} \mathrm{~mol}^{-1} \\ & n\left(\mathrm{NaNO}_{3}\right)=0.04 \mathrm{~mol} \\ & n\left(\mathrm{O}_{2}\right)=0.02 \mathrm{~mol} \end{aligned}$ Volume of $\mathrm{O}_{2}=0.0200 \times 24000=480 \mathrm{~cm}^{3}$	B1 B1 B1 B1	
7 (a)	$0.0250 \times 23.0=0.575 \mathrm{~g}$	B1	
7 (b)	$2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$	B1	
7 (c)	$n\left(\mathrm{H}_{2}\right)=0.0125 \mathrm{~mol}$ Volume $\mathrm{H}_{2}=0.0125 \times 24000=300 \mathrm{~cm}^{3}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
7 (d) (i)	$\begin{aligned} & n(\mathrm{NaOH})=n(\mathrm{Na})=0.0250=\mathrm{c} \times 50 / 1000 \\ & c=0.500 \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$	B1	
7 (d) (ii)	$c=0.500 \times 40.0=20.0 \mathrm{~g} \mathrm{dm}^{-3}$	B1	
8 (a)	58.5 g	B1	
8 (b)	$\left.\begin{array}{l} n\left(\mathrm{Cl}_{2}\right)=\left(2.5 \times 10^{9}\right) / 24=1.04 \times 10^{8} \mathrm{~mol} \\ n(\mathrm{NaOH})=2 \times 1.04 \times 10^{8}=2.08 \times 10^{8} \mathrm{~mol} \\ 2.08 \times 10^{8}=4.00 \times V(\text { in dm} \\ 3 \end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
9 (a) (i)	$\begin{aligned} & \mathrm{C}: \mathrm{H}=54.55 / 12.0: 9.09 / 1.0: 36.36 / 16.0=4.55 \\ & : 9.09: 2.27 \\ & \text { Empirical formula }=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \end{aligned}$	B1 B1	
9 (a) (ii)	$\begin{aligned} & p V=n R T \\ & n=\frac{\left(103 \times 10^{3}\right) \times\left(72.0 \times 10^{-6}\right)}{8.314 \times 373}= \\ & 0.00239 \mathrm{~mol} \\ & M=\frac{0.2103}{0.00239}=88.0 \end{aligned}$	B1 B1 B1 B1	
9 (a) (iii)	Molecular formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \times 88 / 44=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	B1	
10 (a) (i)	$\begin{aligned} & \mathrm{Al}^{3+} \\ & \mathrm{SO}_{4}{ }^{2-} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	

Question number	Answer	Marks	Guidance
10 (a) (ii)	$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}$ 1 Mark for the species and a balanced Equation 1 Mark for state symbols	B1*2	ALLOW multiples
10 (a) (iii)	water of crystallisation	B1	IGNORE hydrated OR hydrous OR 'contains water'
10 (a) (iv)	$\begin{aligned} & n\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=6.846 / 342.3=0.0200 \mathrm{~mol}\right. \\ & n\left(\mathrm{H}_{2} \mathrm{O}\right)=(12.606-6.848) / 18.0=0.320 \mathrm{~mol} \\ & n\left(\mathrm{H}_{2} \mathrm{O}\right) / n\left(\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\right)=16 \end{aligned}$	B1 B1 B1	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW as ECF from 12.606/342.3 = 0.0368(273) AND $0.32 / 0.0368(273)$ To give $x=9$ for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2. ALLOW ECF for calculation of correctly rounded whole number value of $\mathrm{H}_{2} \mathrm{O}$ from incorrect mol of $\mathrm{H}_{2} \mathrm{O}$ and / or incorrect mol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ BUT x must be a whole number ALLOW alternative method Mol of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}: 6.846 / 342.3=$ 0.02(00) mol (first mark) Molar mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$: $12.606 / 0.02(00)=630.3 \mathrm{~g} \mathrm{~mol}^{-1}$ (second mark) Mass of water per mol $=630.3$ $342.3=288$ AND 288/18 to give $x=16$ (third mark)

Question number	Answer	Marks	Guidance
11 (a)	$\begin{aligned} & M\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)=381.2 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \\ & n\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)=0.0800 \times 250 / 1000= \\ & 0.02(00) \mathrm{mol} \\ & \text { mass }=0.0200 \times 381.2=7.624 \mathrm{~g} \end{aligned}$ OR ALTERNATIVE $\begin{aligned} & M\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)=381.2 \mathrm{~g} \mathrm{~mol}^{-1} \\ & \text { mass }=0.0800 \times 381.2=30.496 \mathrm{~g} \text { (for } \\ & \left.1000 \mathrm{~cm}^{3}\right) \\ & \text { mass }=30.496 / 4=7.624 \mathrm{~g} \end{aligned}$	B1 B1 B1 A1 A1 A1	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 381 DO NOT ALLOW 380 ALLOW [incorrect amount of borax] x 381.2 OR [incorrect amount of borax] x [incorrect molar mass of borax] OR $0.02(00) \times$ [incorrect molar mass of borax] correctly calculated for this mark ALLOW calculator value or rounding to three significant figures or more IGNORE (if seen) a second rounding error OR ALLOW 381 DO NOT ALLOW 380 ALLOW $0.0800 \times$ [molar mass of borax] correctly calculated for 2nd mark (ie mass of borax in $1000 \mathrm{~cm}^{3}$) ALLOW [mass of borax in $1000 \mathrm{~cm}^{3}$] / 4 correctly calculated for 3rd mark ALLOW calculator value or rounding to three significant figures or more IGNORE (if seen) a second rounding error
11 (b) (i)	$\begin{aligned} & n\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)=0.0800 \times 22.5 / 1000 \\ & =1.80 \times 10^{-3} \mathrm{~mol} \end{aligned}$	B1	
11 (b) (ii)	$n(\mathrm{HCl})=2 \times 1.80 \times 10^{-3}=3.60 \times 10^{-3} \mathrm{~mol}$	B1	ALLOW [incorrect amount of borax] $\times 2$ correctly calculated for the 2nd mark. ALLOW calculator value or rounding to 3 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2

Question number	Answer	Marks	Guidance
11 (b) (iii)	$c=3.60 \times 10^{-3} \times 1000 / 25.00=0.144 \mathrm{~mol} \mathrm{dm}^{-3}$	B1	ALLOW [incorrect amount of HCl] / (25/1000) correctly calculated for the 3rd mark given to 3 SF
12 (a)	Bubbles Solid dissolves	$\begin{array}{\|l\|} \hline \mathrm{B} 1 \\ \mathrm{~B} 1 \end{array}$	
12 (b)	0.500 mol HCl is dissolved in each $1 \mathrm{dm}^{3}$ of solution	B1	
12 (c) (i)	$\begin{aligned} & M\left(\mathrm{Li}_{2} \mathrm{CO}_{3}\right)=73.8 \mathrm{~g} \mathrm{~mol}^{-1} \\ & n\left(\mathrm{Li}_{2} \mathrm{CO}_{3}\right)=0.025 \mathrm{~mol} \\ & n(\mathrm{HCl})=0.500 \times 125 / 1000=0.0625 \mathrm{~mol} \end{aligned}$	B1 B1 B1	
12 (c) (ii)	$0.025 \mathrm{~mol} \mathrm{Li}_{2} \mathrm{CO}_{3}$ reacts with 0.050 mol HCl HCl is in excess by $0.0625-0.0500=$ 0.0125 mol	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$	
12 (d) (i)	$\begin{aligned} & n\left(\mathrm{CO}_{2}\right)=n\left(\mathrm{Li}_{2} \mathrm{CO}_{3}\right)=0.025 \mathrm{~mol} \\ & \text { Volume of } \mathrm{CO}_{2}=0.025 \times 24000=600 \mathrm{~cm}^{3} \end{aligned}$	B1	
12 (d) (ii)	CO_{2} is slightly soluble in water.	B1	
12 (e)	$\begin{aligned} & n(\mathrm{HCl})=0.0500 \mathrm{~mol} \\ & \mathrm{c}=0.0500 \times 1000 / 125=0.400 \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$	B1	
13 (a) (i)	$\begin{aligned} & (26.0 / 100.1) \times 100 \\ & =26.0 \% \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	First mark for 100.1 OR (64.1 + 36.0) OR $(74.1+26.0)$ at bottom of fraction with or without $\times 100$ ALLOW full marks for 26.0 or 26% with no working out ALLOW from two significant figures up to calculator value ALLOW 25.97 / 26\% NO ECF for this part from incorrect numbers in first expression
13 (a) (ii)	$n\left(\mathrm{CaC}_{2}\right)=1.00 \times 10^{6} / 64.1=15600 \mathrm{~mol}$	B1	ALLOW calculator value of 15600.62402 and any rounded value to a minimum of three significant figures
13 (a) (iii)	$n\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)=3.60 \times 10^{5} / 24.0=15000 \mathrm{~mol}$	B1	ALLOW 1.50×104 etc.

Question number	Answer	Marks	Guidance
13 (a) (iv)	\% yield $=15000 / 15600 \times 100=96.2 \%$	B1	ALLOW ECF from (iii) \div (ii) ALLOW calculator value 96.153 8461 and any rounded value to a minimum of two significant figures ALLOW 96.14768284 if 15601 is used uLLOw any value between 88 to
13 (a) (v)	Any two from: low atom economy gives a poor sustainability OR low atom economy means lots of waste a use for the aqueous calcium hydroxide needs to be developed to increase atom economy 89 if answer to (iii) was calculated by dividing by 26		
alternative process needs to be developed with high atom economy	B1*2	ANNOTATE WITH TICKS AND CROSSES IGNORE comments about percentage yield	

